Scaling Performance of the Shallow Water
Equations on the Suprenum-1 Supercomputer

Oliver A. McBryan

CU-CS-637-92 December 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
DEC 1992 2 REPORTTYPE 00-00-1992 to 00-00-1992
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
Scaling Performance of the Shallow Water Equationson the Suprenum-1 | .\« \UvBER
Supercomputer

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER

Colorado,Boulder,C0O,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

SCALING PERFORMANCE OF THE SHALLOW WATER
EQUATIONS ON THE SUPRENUM-1 SUPERCOMPUTER

Oliver A. McBryan*

Department of Computer Science
University of Colorado
Boulder, CO 80309

Abstract.

We describe the implementation of a fluid dynamical benchmark on the 256 node
SUPRENUM-1 parallel computer. The benchmark, the Shallow Water Equations, is frequently
used as a model for both oceanographic and atmospheric circulation. We describe the steps
involved in implementing the algorithm on the SUPRENUM-1 and we provide details of perfor-
mance.

Optimal SUPRENUM performance requires algorithms that may be compiled into vector
instructions with long vector length, and as with many other MIMD systems, relatively few com-
munication operations. For such algorithms the system delivers a very impressive fraction of its
theoretical peak rate. SUPRENUM software is excellent, including communication facilities and a
fully vectorizing compiler for Fortran 77 which was used in this study.

We have measured 5.33 Mflops (64-bit arithmetic) for single node performance, and 1280
Mflops aggregate performance with 256 nodes, at efficiencies up to 95%. This compares well with
vector and MIMD supercomputers and shows that SUPRENUM was among the fastest MIMD
computers during 1992. Performance of 1530 Mflops was measured for the same algorithm on the
CRAY YMP/8, and 543 Mflops was measured on the 128-node Intel iPSC/860. The SIMD Think-
ing Machines CM-200 delivers 5.25 Gflops (64-bit) and 8.09 Gflops (32-bit) for the benchmark.
We also discuss the influence of physical cluster interconnection topology and asynchronous com-
munication on SUPRENUM performance.

* Research supported by the Air Force Office of Scientific Research, under grant AFOSR-89-0422 and by NSF Grand
Challenge Application Group grant ASC-9217394.

1. INTRODUCTION

The Shallow Water Equations are a standard model for atmospheric and oceano-
graphic processes. Implementations of the algorithm have been used as benchmarks for
vector and parallel supercomputer performance for many years!5. The Shallow Water
algorithm is very memory intensive, involving 14 variables per grid point, and accesses
these using nine-point stencils, non-linear expressions and essential divisions. The com-
bined effect provides a decidedly non-trivial test of any computer system. We have
recently implemented the benchmark on the 256 node SUPRENUM-1 MIMD parallel
supercomputer and report on the results in this paper - see also 57,

The tests were run on the SUPRENUM-1 hardware at the GMD in St-Augustin, Ger-
many, which was running the Peace 3.0 operating system software. The Shallow Water
code ran on a single node using 64-bit arithmetic at 5.33 Mflops and on a 256 node system
at up to 1280 Mflops. Performance of 5.33 Mflops per node was quite impressive, espe-
cially as the code was not explicitly vectorized in any way.

In fact this single-node performance exceeds the typical performance we have seen
for the same algorithm on the Intel iPSC/860 systems, despite the fact that the latter
system’s nodes have several times the peak performance of SUPRENUM’s. We conclude
that the SUPRENUM compiler is doing an excellent job of locating vectorizable state-
ments, and in generating efficient pipelined vector instructions to implement such state-
ments. Numerical results agreed to high precision with those from other machines. We
expect that even higher per-node performance could be achieved by utilizing explicit
optimizations, and by coding computationally intensive segments using SUPRENUM
Fortran’s array extensions (Fortran 90).

The multi-node performance compares well with the iPSC/860 hypercube where an
optimized Fortran version of the Shallow Water Equations runs at 543 Mflops (64-bit pre-
cision) on 128 processors>, with the CRAY XMP which solves the equations at a rate of
560 Mflops on 4 processors, and with the CRAY YMP where 1530 Mflops has been
attained using 8 processors. The SIMD Thinking Machines CM-200 however is substan-
tially faster, delivering 5.25 Gflops (64-bit) and 8.09 Gflops (32-bit)8. Some single-node
SUPRENUM measurements reported here are slightly different from those reported a year
ago>. This is because of variations due to compiler or operating system changes. In that
paper measurements were restricted to only 16 nodes as only a SUPRENUM prototype
consisting of a single cluster was available. The main content of this paper is the measure-
ment of performance on up to 256 nodes and the demonstration of good scaling behavior
of the complete system.

-3.

2. THE SUPRENUM-1 SUPERCOMPUTER

The German SUPRENUM-1 computer couples up to 16 processor clusters with a net-
work of 200 Mbit/sec busses. The busses were intended to be arranged as a rectangular
grid with 4 horizontal and 4 vertical busses, although other configurations have also been
employed (see below). Each cluster consists of 16 processors connected by a fast bus,
along with I/O devices for communication to the global bus grid and to disk and host com-
puters. There can be a dedicated disk for each cluster. Individual processors can deliver
up to 20 Mflops (64-bit chained) or 10 Mflops (64-bit unchained) of computing power and
support 8 Mbytes of memory, upgradable to 32 Mbytes. The high bandwidth of the bus
network makes this an interesting machine for a wide range of applications, including
those requiring long-range communication. No more than four communication steps are
ever required between remote nodes (with four steps needed only if both a honzontal and a
vertical bus must be traversed).

While SUPRENUM clusters are well defined by their interconnection bus, the con-
nectivity between clusters is modifiable by rewiring the connections appropriately. In
principle this is simple, although in practice it turns out to be a major undertaking because
there are severe physical constraints on the length of the buses involved, plus the fact that
each bus must actually connect to form a ring. Each ring must visit from 4 to 6 clusters.
During 1991, the SUPRENUM-1 clusters were connected in a simple ring (actually four
parallel rings, although it was not possible to fully utilize the parallelism). In January
1992 the SUPRENUM-1 was re-configured as a full double matrix of busses. In June 1992
the SUPRENUM-1 topology was changed to provide a topology where each cluster has a
direct connection to every other one so that no all communication operations required at
most three steps.. The results reported on in this paper deal primarily with the latter inter-
connection network as this provided the best overall performance from the three intercon-
nection schemes which were studied.

SUPRENUM software is characterized by the best support for MIMD scientific appli-
cations to be found among the various distributed memory MIMD vendors. The effort
invested in development of libraries of high-level grid and communication primitives
greatly eases the effort of moving applications to the computer, and also provides substan-
tial high-level portability to other systems, since the communication library can be imple-
mented in terms of low level primitives on any distributed system.

The first 16-processor prototype system was delivered in 1989 and the first opera-
tional 256 processor system became available in November 1991. The full system has a 5
Gflops peak rating and should have high realizable efficiency in appropriate applications,
namely those where communication is relatively infrequent and where long vector lengths
predominate.

-4-

3. THE SHALLOW WATER EQUATIONS BENCHMARK

As an example of the current capabilities of the SUPRENUM system we describe the
implementation of a standard two-dimensional atmospheric model - the Shallow Water
Equations - on the SUPRENUM-1. These equations provide a primitive but useful model
of the dynamics of the atmosphere. Because the model is simple, yet captures features
typical of more complex codes, the model is frequently used in the atmospheric sciences
community to benchmark computers!>2, Furthermore, the model has been extensively
analyzed mathematically and numerically®: 19,

The Shallow Water Equations, without a Coriolis force term, take the form

—%‘i Z;v+-#=0
e

oP , OPu , oPv _
ot Ty 0

where u and v are the velocity components in the x and y directions, P is pressure, { is
o, p o OV _ du . L)
the wvorticity: (= 9% "Iy and H, related to the height field, is given by:
H=P+W2+v%/2. It is required to solve these equations in a rectangle
a <x <b,c £y £d. Periodic boundary conditions are imposed on u, v, and P, each of
which satisfies f (x+b,y)=f (x+a.,y), f (x,y+d)=f (x ,y+c).
A scaling of the equations results in a slightly simpler format. Introduce mass fluxes
U=Pu and V=Pv and the potential velocity Z={/P, in terms of which the equations
reduce to:

au ' aH

—a‘—+ZU+—g—=0,

0P L U L 3V _,
arta gy =Y

4. DISCRETIZATION

We have discretized the above equations on a rectangular staggered grid with
periodic boundary conditions. The variables P and H have integer subscripts, Z has half-
integer subscripts, U has integer and half-integer subscripts, and V' has half-integer and
integer subscripts respectively.

-5

Initial conditions are chosen to satisfy V¥ =0 at all times. We time difference using
the Leap-frog method. We then apply a time filter to avoid weak instabilities inherent in
the Leap-frog scheme:

F®) = () 4 o (f +D=2f (0)4f (n-1)) |

where a is a filtering parameter. The filtered values of the variables at the previous time-
step are used in computing new values at the next time-step. For a complete description of

the discretization we refer tol.

S. SERIAL FORTRAN IMPLEMENTATION

The Fortran code implementing the above algorithm involves a 2D rectangular grid
with variables: u(i,j),v(@,j),pG.j),z(,j),psi(i,j), h(i,j). There are three main loops,
two corresponding to the Leap-frog time propagation of various quantities, and one for the
filtering step. Execution of these three loops completes a single time step, which is then
repeated until the desired temporal simulation interval has been achieved. A typical code
sequence, used in the updating of the U, V and P variables, is:

do 20 j=1,n
do 20i=1,m
unew(i+1,j) = uold(i+1j)
+ tdis8*(z(i+1 j+1)+2(i+1,5))*(cv(i+1 j+1)+cv(ij+1)+cv(ij)+cv(i+1j))
- tdtsdx*(h(i+1 j)-h(i,j))
view(ij+1) = vold(i,j+1)
- tdis8* (z(i+1 j+1)+z(i j+1))*(cu(i+1 j+1)+cu(ij+1)+cu(ij)+cu(i+1j))
- tdtsdy*(h(i j+1)-h(i,j))
pnew(i,j) = pold(ij) - tdtsdx*(cu(i+1 j)-cu(i,j)) - tdisdy*(cv(ij+1)-cv(ij))

20 continue

Each such loop is followed by code to implement the periodic boundary conditions.
In the above case, the corresponding boundary code takes the form:

do 21 j=1,n
unew(l,j) = unew(m+1j)
view(m+1,j+1) = vnew(1,j+1)
pnew(m+1j) = pnew(l j)
21 continue

Note that there are such loops for both the horizontal and vertical boundaries, and in addi-
tion some corner values are copied as single items.

Excluding the boundary computations, the three major loops in a time step involve 65
arithmetic operations per grid point. Furthermore 14 physical variables must be stored per
grid point, which significantly limits the largest grid size that can be accommodated in a
single node.

6. SUPRENUM IMPLEMENTATION

To speed the implementation effort we decided to test the idea of porting a generic
MIMD parallel version of the Shallow Water Equations to the SUPRENUM-1. The work
was based on a parallel code developed by McBryan and Pozo®: 11, The code was
developed for a generic class of MIMD parallel computers, based on the assumption of a
single process per node model. The code was developed and tested using a simulator for
the generic model developed previouslylz' 13, The simulator supports versions of the Intel
iPSC communication protocols.

SUPRENUM supports a library interface allowing both Intel iPSC1 and iPSC2 com-
munication interfaces to be utilized. It suffices to declare the main program of both the
host and node processes to be SUPRENUM tasks, while the rest of each program may
remain as a pure Intel iPSC program. This approach greatly eased code modifications that
would have been required to develop a complete SUPRENUM-1 implementation from
scratch. In fact the code was ported and fully working within hours. The program ran
immediately and gave correct results on the first try. This demonstrates the advantages of
developing MIMD codes initially using simulators, and transferring to hardware only
when the simulations are running correctly.

Since the code involves rectangular grid arrays, and a nine-point stencil, the paralleli-
zation of the code is straightforward. A logical mapping of the processors to a two dimen-
sional array is selected. Thus if P =p,p,, is a factorization of the number of processors
P, then we regard the processors as arranged in a pyxp, logical grid. The large arrays
representing physical variables (u,v, etc.) are then decomposed into equal sized blocks,
with one block assigned to each processor. For simplicity we assume that the x and y grid
dimensions are exact multiples of the corresponding processor numbers p, and p,. Each

-7-

such block is then stored in an array of the same shape, but which has an extra boundary
row or column provided on each of the four sides. These extra boundary points are used to
maintain copies of the true (i.e. interior) boundary points of the four neighboring proces-
sors. The three main loops of the time step are decomposed into equivalent loops per-
formed by each processor on the interior points of the block assigned to that processor.
Prior to each loop, the boundary values are updated by exchanging appropriate values
between neighboring processors, following a synchronization to ensure that all neighbors
have completed changes. Such exchanging generally requires communication which was
implemented by communicating large packets for each of the four sides of a block.

There is an essential simplification that occurs in the case that either p, orp; is 1 - in
which case the logical rectangular processor array reduces to a line of processors. In this
case two of the four communications required within each main loop are not needed,
reducing substantially the communication overhead. As mentioned previously, the Shal-
low Water code uses periodic boundary conditions in each dimension. Normally periodic
boundary conditions require copying data between processors at opposite edges of the pro-
cessor array. In the case that one or other of p, or p, is 1, the periodic boundary condition
in the corresponding dimension may be implemented by in-memory copying, rather than
by communication.

A final optimization of the communication structure was required to get the peak per-
formance. Before each of the main loops in the algorithm, the boundary data for the vari-
ous physical variables (P,U,V,Z ,H) used in that loop need to be copied from neighboring
processors. Typically two or three variables are needed from a specific direction, although
the number needed may depend on the direction. Because of the high communication
startup cost of SUPRENUM-1 (at least 2 msecs), it is essential to limit the number of indi-
vidual communication requests. This was accomplished by packaging several communi-
cations of different physical variables in a single direction into one large communication
package. For some steps this reduced startup overhead by a factor of three. In the final
implementation we also replaced the Intel iPSC communication calls for this one exchange
operation by explicit calls to SUPRENUM Fortran equivalents, thereby saving an extra
copying of each data array to a communication buffer. SUPRENUM Fortran supports
explicit communication operations using a standard Fortran I/O control list syntax.

There is potential in the Shallow Water Equations to overlap communication with
computation, provided the underlying hardware supports asynchronous communication
modes. In this case one would begin each major loop by an asynchronous exchange of
boundary data. Following this one executes the main body of the loop, however iterating
only over the "interior points" of the subgrid. It is then necessary to await completion of
the exchange operation, after which the the loop iteration may be completed on the outer-
most rows and columns. In principle such an approach can yield 100% computational
efficiency - i.e. communication effects become negligible. We implemented such an algo-
rithm on SUPRENUM-1. However due to inherent design aspects of the PEACE

-8-

operating system we were unable to effectively use asynchronous communication in the
current version of PEACE.

7. PERFORMANCE RESULTS: SUPRENUM-1

All measurements were performed on a 256-processor SUPRENUM-1 system at the
GMD, in Schloss Berlinghoven, Germany. The Shallow Water Code was exactly the stan-
dard sequential code, modified only to take account of communication. No attempt was
made to introduce Fortran 90 vectorization constructs, or to otherwise adapt the code to
known features of the SUPRENUM compiler. The code was compiled with both the vec-
torizer and optimizer switches on.

Because SUPRENUM nodes are vector processors, there is a substantial advantage to
arranging the subgrids in each node such that the grid columns are as long as possible. In
practice, Fortran columns longer than about 1024 words are not an advantage. This is
because the vector registers are limited to a total of 7K words, and Shallow Water requires
7 registers for efficient code generation.

In order to maximize computational efficiency (by minimizing communication words
sent per Mflop), it is desirable to solve as large a problem as will fit in each node. This
turns out to be a problem with 32K grid points which consumes approximately 6 MBytes
of node memory. All measurements presented here utilize subgrids of maximal size,
although their rectangular shape may vary. We maximize both vector performance and
computational efficiency on a node by using a 32x1024 subgrid in each processor. To
indicate the importance of preserving a long vector length we note that performance on a
single node goes from 2.69 Mflops on a 128x256 grid to 5.33 Mflops on a 32x1024 grid, -
essentially a factor 2 improvement (see Table 1 below).

As discussed earlier, the number of communications per node can be reduced by a
factor of two by chosing a one-dimensional processor grid, which may be aligned with
either the X or Y axes. If the processors are in a line in the X direction, then the commun-
ication packets will be of size 1024 words (¥ dimension of the subgrids) per variable,
while if aligned along the Y axis, only 32 words are communicated per physical variable.

More generally we can expect lower performance as the subgrids tend towards a
square shape, such as 128x256, due to the shorter vector lengths. Also using fully two-
dimensional processor grids such as a 16x16 grid will double the number of communica-
tions per node, resulting in poorer performance. All of these phenomena are illustrated in
the measured results.

The final effect which we have studied is the influence of cluster interconnection
topology on performance. The SUPRENUM-1 has been interconnected in three different
ways as described in section 2 - ring, full matrix and full interconnect, and we have meas-
ured Shallow Water Equations performance in all cases. There is a significant dependence

-9.

of performance on the topology used. For example the worst-case efficiency measured
with the double matrix topology was 39% while with the full interconnect topology, the
worst case efficiency is 70%. On the other hand for the most efficient (linear) cases, per-
formance with the full connection topology is slightly worse, dropping from 96% to 94%
efficiency. Clearly the advantages of the full interconnect topology outweigh the disad-
vantages. We give only the measured data for the full interconnect topology.

We present the measured results in Tables 1-4. The tables indicate the number of
processors P, their arrangement as a logical Px xPy rectangular processor array, the com-
putational domain size MxxMy, the resulting computational efficiency and the Mflops
generated. The computational efficiency in all cases is defined as

E = Tpea(1)/ (P T(P)),

where T (P) is the solution time with P processors and T,y (1) is the best possible single-
node performance with a subgrid of the same size but optimal shape. ‘

Table 1 presents the effect of varying the grid shape in a single node. This demon-
strates clearly the importance of maximizing vector length. Indeed the almost square
256x128 grid provides only 77% of the performance of the elongated 32x1024 grid with
the same number of grid points. At the other extreme, the 1024x32 grid delivers only 43%
of the performance of the 32x1024 grid.

TABLE 1: SINGLE NODE PERFORMANCE AS FUNCTION OF SHAPE
P Px Py Mx My Efficiency Mflops
1 1 1 1024 32 0.430 2.29
1 1 1 256 128 0.768 4.09
1 1 1 128 256 0.883 4.71
1 1 1 64 512 0.955 5.09
1 1 1 32 1024 1.000 5.33

Table 2 describes the performance of Shallow Water on grids of optimal shape for the
system. Each node contains an optimal 32x1024 grid and the processors are arranged in a
line parallel to the Y direction in order to minimize communication.

-10-

TABLE 2: PROCESSOR GRID ALIGNED WITH Y AXIS
P Px Py Mx My Efficiency = Mflops
1 1 1 32 1024 1.000 5.33

2 1 2 32 2048 0.949 10.11

4 1 4 32 4096 0.948 20.21

8§ 1 8 32 8192 0.948 4041
16 1 16 32 16384 0.946 80.61
32 1 32 32 32768 0.945 161.10
64 1 64 32 65536 0.947 322.74
1288 1 128 32 131072 0.945 644.87
256 1 256 32 262144 0.940 1280.37

Table 3 is similar except that the processors are arranged in a line parallel to the X axis,
resulting in more square grids, and slightly increased communication cost.

TABLE 3: PROCESSOR GRID ALIGNED WITH X AXIS
P Px Py Mx My Efficiency Mflops
1 1 1 32 1024 1.000 5.33

2 2 1 64 1024 0.940 10.01

4 4 1 128 1024 0.934 19.89

8 8 1 256 1024 0.932 39.68
16 16 1 512 1024 0.931 79.29
32 32 1 1024 1024 0.919 156.76
64 64 1 2048 1024 0.920 313.24
128 128 1 4096 1024 0.912 621.83
256 256 1 8192 1024 0.905 1234.73

In Table 4, we compare the effect of varying the shape of the processor grid for 256
node computations. Each node is maintained at the optimal 32x1024 grid. The almost
square 4096x2048 grid on a 128x2 processor array is seen to deliver 1117 Mflops. The
alternative of creating a near square global grid from 256 near square subgrids would have
yielded about 25% less performance as indicated by Table 1.

-11-

TABLE 4: 256-NODE PERFORMANCE AS FUNCTION OF PROCESSOR GRID
P Px Py Mx My Efficiency Mflops
256 256 1 8192 1024 0.905 1234.73
256 128 2 4096 2048 0.820 1117.40
256 64 4 2048 4096 0.709 967.34
256 32 8 1024 8192 0.815 1110.72
256 16 16 512 16384 0.738 1007.87
256 8 32 256 32768 0.866 1180.16
256 4 64 128 65536 0.883 1202.52
256 2 128 64 131072 0.885 1206.58
256 1 256 32 262144 0.940 1280.37

8. A COMPARISON OF CRAY, CM-200, iPSC/860 AND SUPRENUM-1

We have compared the SUPRENUM performance with that on the CRAY XMP and
YMP computers, on the Thinking Machines CM-200 and on the Intel iPSC/860 hypercube.
Results are presented in Table 5.

The performance on a single processor of a CRAY-XMP was 148 Mflops. The
CRAY-XMP4/8 executed the Shallow Water Equations at 560 Mflops using 4 processors
on a 512x512 grid, the largest that could be handled directly (i.e without SSD coding).
The CRAY-YMP with 8 processors runs the Shallow Water Equations at 1,530 Mflops on
a 512x512 grid.” The Connection Machine CM-200 results are described in more detail
in8, while the Intel iPSC/860 results are reported in more detail in811,

TABLE 5: COMPARISON TO OTHER ARCHITECTURES
Machine Processors Grid Size Mflops
CM-200 (64-bit) 2048 16M 5249
CM-200 (32-bit) 2048 32M 8086
CRAY-XMP 4 256K 560
CRAY-YMP 8 256K 1530
Intel iPSC/860 128 2M 543
SUPRENUM-1 256 8M 1280

+ CRAY measurements were performed by Dr. R. Sato, National Center for Atmospheric Research, Boulder,
. CO.

-12-

To relate SUPRENUM-1 to other systems, it is fair to say that for most of 1992 this
system was among the most powerful available MIMD systems. However the SIMD CM-
200 is far more powerful. With the arrival of vector nodes for the Thinking Machines
CM-5 computer, SUPRENUM will no longer be in this position in late 1992. The perfor-
mance measurements also should be qualified by the cost per Mflops of the different sys-
tems, which we have not considered in detail. However it does appear that SUPRENUM
loses much of its performance advantage relative to the iPSC/860 if pricing is considered.
This is due to the fact that the SUPRENUM nodes involve essentially more complex
hardware (e.g. vector nodes) than the iPSC/860. The SUPRENUM node design was for-
mulated long before the much cheaper i860 processor appeared.

9. CONCLUSIONS

The SUPRENUM-1 system is shown to deliver excellent performance per node for
problems which are vectorizable and which also have a long vector length. This perfor-
mance scales well to large systems. While communication overheads are greater than on
many competing systems (e.g. Intel iPSC/860), this is more than counterbalanced by the
higher achievable node performance. With the successful demonstration of the 256-node
SUPRENUM-1, the SUPRENUM project may be regarded as a scientific success. Based
on this success of the initial SUPRENUM-1 prototype, it is unfortunate that a successor
system based on newer technology is not being developed.

ACKNOWLEDGEMENTS

We would like to thank the GMD for providing access to the SUPRENUM-1, We
thank H. Bast of SUPRENUM GmbH for helpful comments.

References

1. G.-R. Hoffmann, P.N. Swarztrauber, and R.A. Sweet, ‘‘Aspects of using multiproces-
sors for meteorological modeling,”” in Multiprocessing in Meteorological Models, ed.
D. Snelling, pp. 126-195, Springer-Verlag, Berlin, 1988.

2. O. McBryan, “New Architectures: Performance Highlights and New Algorithms,”’
Parallel Computing, vol. 7, pp. 477-499, North-Holland, 1988.

3. O. McBryan and R. Pozo, ‘‘Performance Evaluation of the Myrias SPS-2 Com-
puter,”” CS Dept Technical Report CU-CS-505-90 (to appear in Concurrency: Prac-
tice and Experience), University of Colorado, Boulder, 1990.

10.

11.

12.

13.

-13-

O. McBryan and R. Pozo, ‘‘Performance Evaluation of the Evans and Sutherland
ES-1 Computer,”’ CS Dept Technical Report CU-CS-506-90, University of Colorado,
Boulder, 1990.

O. McBryan, ‘A Comparison of the Intel iPSC860 and SUPRENUM-1 Parallel
Computers,”’ University of Colorado Tech. Report CU-CS-499-90 and Supercom-
puter, vol. 41, no. 1, pp. 6-17, 1991.

O. McBryan, ‘‘Performance of the Shallow Water Benchmark on the SUPRENUM-1
Parallel Supercomputer,’”” in Leistungsmessungen flir technisch-wissenschaftliche
Anwendungen auf dem SUPRENUM-System, ed. H. Mierendorff and U. Trottenberg,
Arbeitspapiere der GMD 624, GMD, Sankt-Augustin, Germany, March 1992.

O. McBryan, ‘‘Performance of the Shallow Water Benchmark on the SUPRENUM-1
Parallel Supercomputer with the Full Bus Interconnection Network,”’ in Ergénzende
Leistungsmessungen flr technisch-wissenschaftliche Anwendungen auf dem
SUPRENUM-System, ed. H. Mierendorff and U. Trottenberg, Arbeitspapiere der
GMD 669, GMD, Sankt-Augustin, Germany, July 1992.

O. McBryan and R. Pozo, ‘‘Performance of the Shallow Water Equations on the Intel
iPSC/860 Computer,”” CS Dept Technical Report, University of Colorado, Boulder,
1991.

R. Sadourny, ‘‘The dynamics of finite difference models of the shallow water equa-
tions,”” JAS, vol. 32, pp. 680-689, 1975.

G.L. Browning and H.-O. Kreiss, ‘‘Reduced systems for the shallow water equa-
tions,”’ JAS, vol. 44, 1987.

R. Pozo, ‘‘Performance Modeling of Parallel Architectures for Scientific Comput-
ing,”” PhD Thesis, Department of Computer Science, University of Colorado at
Boulder, 1991.

O. McBryan and E. Van de Velde, Hypercube Algorithms and Implementations,
SIAM J. Sci. Stat. Comput., 8, pp. 227-287, 1987.

O. McBryan, ‘‘Software Issues at the User Interface,”’ in Frontiers of Supercomput-
ing II: A National Reassessment, ed. W.L. Thompson, University of Colorado CS
Dept. Tech Report CU-CS-527-91 and MIT Press, 1992, to appear.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

